viernes, 3 de diciembre de 2010

BIORREACTORES

Un biorreactor es un recipiente o sistema que mantiene un ambiente biológicamente activo. En algunos casos, un biorreactor es un recipiente en el que se lleva a cabo un proceso químico que involucra organismosbioquímicamente activas derivadas de dichos organismos. Este proceso puede ser aeróbico o anaeróbico. Estos biorreactores son comúnmente cilíndricos, variando en tamaño desde algunos mililitros hasta metros cúbicos y son usualmente fabricados en acero inoxidable. o sustancias
Un biorreactor puede ser también un dispositivo o sistema empleado para hacer crecer células o tejidos en operaciones de cultivo celular. Estos dispositivos se encuentran en desarrollo para su uso en ingeniería de tejidos.
En términos generales, un biorreactor busca mantener ciertas condiciones ambientales propicias (pH, temperatura, concentración de oxígeno, etcétera) al organismo o sustancia química que se cultiva. En función de los flujos de entrada y salida, la operación de un biorreactor puede ser de tres modos distintos:

Diseño de biorreactores

El diseño de biorreactores es una tarea de ingeniería bastante compleja. Los microorganismos o células son capaces de realizar su función deseada con gran eficiencia bajo condiciones óptimas. Las condiciones ambientales de un biorreactor tales como flujo de gases (por ejemplo, oxígeno, nitrógeno, dióxido de carbono, etc.), temperatura, pH, oxígeno disuelto y velocidad de agitación o circulación, deben ser cuidadosamente monitoreadas y controladas.
La mayoría de los fabricantes industriales de biorreactores usan recipientes, sensores, controladores y un sistema de control interconectados para su funcionamiento en el sistema de biorreacción (ver PLC).
La misma propagación celular (fenómeno conocido en inglés como Fouling) puede afectar la esterilidad y eficiencia del biorreactor, especialmente en los intercambiadores de calor. Para evitar esto, el biorreactor debe ser fácilmente limpiable y con acabados lo más sanitario posible (de ahí sus formas redondeadas).
Se requiere de un intercambiador de calor para mantener el bioproceso a temperatura constante. La fermentación biológica es una fuente importante de calor, por lo que en la mayor parte de los casos, los biorreactores requieren de agua de enfriamiento. Pueden ser refrigerados con una chaqueta externa o, para recipientes sumamente grandes, con serpentines internos.
En un proceso aerobio, la transferencia óptima de oxígeno es tal vez la tarea más difícil de lograr. El oxígeno se disuelve poco en agua (y aún menos en caldos fermentados) y es relativamente escaso en el aire (20,8 %). La transferencia de oxígeno usualmente se facilita por la agitación, que se requiere también para mezclar los nutrientes y mantener la fermentación homogénea. Sin embargo, existen límites para la velocidad de agitación, debidos tanto al alto consumo de energía (que es proporcional al cubo de la velocidad del motor) como al daño ocasionado a los organismos debido a un esfuerzo de corte excesivo.
Los biorreactores industriales usualmente emplean bacterias u otros organismos simples que pueden resistir la fuerza de agitación. También son fáciles de mantener ya que requieren sólo soluciones simples de nutrientes y pueden crecer a grandes velocidades.
En los biorreactores utilizados para crecer células o tejidos, el diseño es significativamente distinto al de los biorreactores industriales. Muchas células y tejidos, especialmente de mamífero, requieren una superficie u otro soporte estructural para poder crecer y los ambientes agitados son comúnmente dañinos para estos tipos de células y tejidos. Los organismos superiores también requieren medios de cultivo más complejos.

Introducción

El diseño en bioingeniería no es solo la aplicación de conceptos básicos y teóricos que conlleven a lograr un prototipo; para la realización integra de un modelo, otra gran parte, trata de la adaptación creativa y de la utilización del ingenio propio para lograr el objetivo de conjuntar el ambiente biológico de un cultivo vivo con el ambiente artificial de un dispositivo controlado; este es el resultado denominado biorreactor o reactor biológico. Un biorreactor es por tanto un dispositivo biotecnológico que debe proveer internamente un ambiente controlado que garantice y maximice la producción y el crecimiento de un cultivo vivo; esa es la parte biológica. Externamente el biorreactor es la frontera de protege ese cultivo del ambiente externo: contaminado y no controlado. El biorreactor debe por tanto suministrar los controles necesarios para que la operación o proceso (bioproceso) se lleve a cabo con economía, alto rendimiento (productividad) y en el menor tiempo posible; esa es la parte tecnológica.

Cultivos y Fermentaciones

Lo primero que hay que entender en el diseño de reactores biológicos es que contrario a los químicos, su cinética no esta determinada exclusivamente por la velocidad de reacción y las variables que la determinan. Aunque se puede describir de manera similar a la química, la cinética biológica también depende de características intrínsecas del organismo o cultivo tales como crecimiento y taza de división celular, así como, del tipo de operación que se lleve a cabo. Por eso, lo primero que se define en el diseño de un biorreactor es el propósito de utilización; es decir, que tipo de cultivo se va a utilizar, el modo de operar y/o el proceso de cultivo. El conjunto biorreactor-sistema de cultivo debe cumplir con los siguientes objetivos:
  1. Mantener las células uniformemente distribuidas en todo el volumen de cultivo.
  2. Mantener constante y homogénea la temperatura.
  3. Minimizar los gradientes de concentración de nutrientes.
  4. Prevenir la sedimentación y la floculación.
  5. Permitir la difusión de gases nutrientes a la velocidad requerida por el cultivo.
  6. Mantener el cultivo puro.
  7. Mantener un ambiente aséptico.
  8. Maximizar el rendimiento y la producción.
  9. Minimizar el gasto y los costos de producción.
  10. Reducir al máximo el tiempo.
Una fermentación es un proceso biológico o bioproceso que consiste en la descomposición de la materia orgánica por microorganismos fermentadores (bacterias y hongos).
Un cultivo también es un bioproceso; pero generalmente se asocia a organismos o microorganismos superiores (en orden jerárquico) a las bacterias; los cultivos son casi todos del Reino Eucariota.

Clasificación de los Biorreactores

Clasificación Operativa

Tanto biorreactores como fermentadores se clasifican primeramente de acuerdo al modo de operación: discontinuo, semicontinuo, continuo. Esta es una clasificación operativa y se aplica a cualquier reactor, sea químico o biológico (biorreactor). En los reactores biológicos el modo de operación define el sistema de cultivo que es el mismo y delimita la clasificación procesal-productiva del bioproceso (cultivo). Al operar un biorreactor en una determinada categoría (discontinuo, semicontinuo, continuo), automáticamente queda determinado el modo de cultivo del sistema y se definen los parámetros y las características operativas y de diseño que intervienen en el proceso productivo del sistema.

Clasificación Biológica

Los sistemas biológicos deben interaccionar con el ambiente externo para poder crecer y desarrollarse; es por eso que los biorreactores se clasifican biológicamente de acuerdo al metabolismo procesal del sistema de cultivo: anaeróbico, facultativo, aeróbico. Los bioprocesos de cultivo y las fermentaciones están basados en el metabolismo celular del cultivo. El metabolismo define los parámetros y características operativas-biológicas de diseño y de operación del biorreactor. Estas características son las que intervienen en la parte biológica del sistema y tienen que ver con el crecimiento, productividad y rendimiento del cultivo; por lo que, definen la clasificación biológica-procesal del sistema de cultivo.

 Clasificación Biológica-Operativa

Ambas clasificaciones; la biológica y la operativa, son procesalmente interdependientes y en su conjunto afectan el diseño final del biorreactor. Al conjuntarse ambas clasificaciones, se conjuntan también la función operativa y la biológica para establecer entre ambas un propósito de utilización, el modo de cultivo y el bioproceso. Siendo el propósito de utilización, el destino de cultivo del biorreactor; para qué tipo de cultivo va a ser utilizado el biorreactor; el modo de cultivo es sinónimo de sistema de cultivo y el bioproceso es en sí, todo el proceso.

Biorreactores y tipos de cultivo

Los sistemas biológicos que determinan el metabolismo celular de cultivo y el modo procesal-biológico del sistema son:

Células y microorganismos anaeróbicos

Bacterias en su gran mayoría, son microorganismos de metabolismo degradativo (catabólico); generalmente unicelulares, estos microorganismos son autónomos y nutricionalmente independientes (autótrofos); sus células (cuerpos) no respiran (no utilizan la glucólisis para la respiración celular), en cambio, utilizan vías alternas, donde una molécula orgánica, producida durante el proceso metabólico (catabolismo), es utilizada como aceptor de electrones, en un proceso bioquímico conocido como respiración oxidativa; esta molécula es reducida a producto orgánico en un proceso comúnmente denominado fermentación.

Células y microorganismos facultativos

Son ambivalentes, tienen la capacidad de vivir o sobrevivir entre ambientes: aeróbico (presencia de oxígeno) y anaeróbico (ausencia de oxígeno); son microorganismos de metabolismo mixto por lo que, pueden tanto degradar (catabolismo) como construir (anabolismo) materia orgánica, a partir de diferentes sustratos (materia prima), tanto orgánicos como inorgánicos. Pese a su versatilidad, sus mayores representantes son microorganismos que presentan relaciones parásitas o simbiontes tales como: hongos y levaduras, por lo que no son muy extensos.

Células y microorganismos aeróbicos

Pertenecen en su mayoría al Reino Eucariota – pero también los hay procariota – son microorganismos y células que respiran (utilizan la glucólisis como forma de respiración celular); por lo que su metabolismo es constructivo (anabólico) y deben obtener sus nutrientes de diferentes fuentes. Sus principales grupos están representados por: bacterias y microorganismos aeróbicos, plantas y animales; cuyas células se puedan cultivar en suspensiones celulares o bien, en diferentes arreglos artificiales o modificadas.
A continuación algunos de los posibles sistemas de cultivo que se pueden realizar y el tipo de biorreactor asociado a cada uno:

Cultivos Microbianos Anaeróbicos - Fermentador Bacterial (CO2)

Los microorganismos de metabolismo anaeróbico son los más simples de todos, tan solo necesitan de un medio de cultivo adecuado, agitación vigorosa y cierta cantidad de CO2 (dióxido de carbono) disuelto (COD) para crecer y multiplicarse.

Cultivos Microbianos Facultativos – Fermentador Bacterial

Los microorganismos facultativos toleran la presencia oxígeno en bajas concentraciones y además de un sustrato adecuado, sólo requieren agitación moderada y un medio de cultivo para crecer y desarrollarse.

Cultivos Microbianos Aeróbicos – Fermentador Bacterial (O2)

Los microorganismos aeróbicos necesariamente requieren la presencia de oxígeno (aire) disuelto (OD) para sobrevivir; además, agitación moderada y un medio de cultivo rico en nutrientes para poder crecer y desarrollarse.

Cultivos Celulares Aeróbicos y Facultativos – Fermentador Micótico (CO2)

Los cultivos celulares se diferencian de los bacteriales (microbios) en que no son microorganismos procariota, son eucariota. Son microorganismos aeróbicos o facultativos pertenecientes al Reino Fungi (hongos y levaduras), generalmente llamados micóticos, requieren de la presencia de CO2 disuelto en el medio como sustrato limitante de la velocidad de reacción y generan estructuras reproductivas muy particulares. Un biorreactor es recipiente o sistema que mantiene un ambiente biológicamente activo. En algunos casos, un biorreactor es un recipiente en el que se lleva a cabo un proceso químico que involucra organismos o sustancias bioquímicamente activas derivadas de dichos organismos. Este proceso puede ser aeróbico o anaeróbico. Estos biorreactores son comúnmente cilíndricos, variando en tamaño desde algunos mililitros hasta metros cúbicos y son usualmente fabricados de acero inoxidable.
Un biorreactor puede ser también un dispositivo o sistema empleado para crecer células o tejidos en operaciones de cultivo celular. Estos dispositivos se encuentran en desarrollo para su uso en ingeniería de tejidos.
En términos generales, un biorreactor busca mantener ciertas condiciones ambientales propicias (pH, temperatura, concentración de oxígeno, etcétera) al elemento que se cultiva. En función de los flujos de entrada y salida, la operación de un biorreactor puede ser de tres modos distintos:
Lote (Batch) Lote alimentado (Fed-Batch) Continuo o quimiostato

Cultivos Celulares Aeróbicos Estrictos – Fermentador con Aireación (O2)

El cultivo de microorganismos celulares (no bacteriales) aeróbicos estrictos requiere la presencia de oxígeno disuelto en el medio de cultivo para el metabolismo celular; así como una adecuada agitación.

[editar] Células Vegetales en Suspensión – biorreactor de Levantamiento por Aire (O2) en Régimen Turbulento (Re≥3000)

Las células vegetales pueden ser cultivadas en suspensiones celulares: pequeños agregados celulares que se suspenden en el medio de cultivo mediante agitación. Dado que las células vegetales respiran, el diseño del biorreactor debe incorporar una línea de aireación (aire) para suministrar oxígeno disuelto (OD) al medio de cultivo. El diseño debe contar con agitación vigorosa, pues los agregados celulares vegetales tienden a agruparse (clusters) y de alcanzar gran tamaño y peso, precipitarían. Por eso, la operación de este tipo de biorreactores debe ser en régimen turbulento (Re≥3000). Los biorreactores para células vegetales en suspensión generalmente son diseñados con un mecanismo de levantamiento por aire “air lift” que combina una agitación vigorosa (turbulenta) con una adecuada aireación (oxígeno disuelto) del medio de cultivo.

Protoplastos Vegetales - biorreactor de Levantamiento por Aire (O2) en Régimen Laminar (Re≤2300)

Los protoplastos son células vegetales desprovistas de su pared celular, esto se logra utilizando enzimas proteolíticas (proteasas y lipasas) que degradan la pared celular. Actualmente, el cultivo de protoplastos no es muy acostumbrado, pero de realizarse, requiere de una cama de aire (burbujas muy finas) que opere en régimen laminar (Re≤2300), para evitar los esfuerzos cortantes (esquileo) e hidrodinámicos (agitación) generados en el medio de cultivo dañen (lisis celular) las células en suspensión (tamaño de Kolmogorov de los Eddies). También es indispensable que el medio de cultivo contenga las proteasas y lipasas necesarias para evitar la regeneración de la pared celular.

Células Animales – biorreactor de Lecho Fluidizado (O2)

Los cultivos de células animales requieren de proximidad mutua y de un soporte sólido (anclaje) para interactuar (comunicación célula-célula) y poder metabolizar (producir); esto por cuanto, las células animales, por lo general, no son independientes y deben estar unidas a un sistema (p.ej; hepático) para funcionar adecuadamente. Para suministrar esa proximidad y el soporte necesario, los diseños de biorreactores para células animales deben aumentar la densidad celular (concentrar) de las células en cultivo. Una forma de hacerlo es incorporar un lecho fluidizado formado por cantidad de microesferas acarreadores hechas de material cerámico poroso inerte que, por su tamaño (micrométrico) forman una interfase con el medio de cultivo (fluido) que permite la transferencia de masa (nutrientes y OD), energía (calor) y momentun (agitación) entre el medio de cultivo y las células en cultivo; lo que es llamado lecho fluidizado. Los cultivos celulares animales, por la delicada naturaleza de las membranas plasmáticas requieren además de oxígeno disuelto (OD) en el medio de cultivo (tamaño de Kolmogorov de los Eddies) y de un régimen de agitación laminar (Re≤2300).

Células Inmovilizadas – biorreactor de Fibra Hueca (O2)

La inmovilización celular es otra forma de lograr proximidad celular y aumentar la densidad celular y la concentración de metabolitos dentro de las células. La inmovilización es un método mucho más eficiente y logra rendimientos muy superiores a los del lecho fluidizado. Pero, los fenómenos de transferencia (masa, momentun y energía) se ven muy limitados por la inmovilidad. Esto es especialmente crítico en cultivos de células de mamífero por cuanto ya célula no recibe la nutrición adecuada.
Los reactores de fibra hueca son los dispositivos más utilizados para inmovilizar y concentrar cultivos celulares animales. Su diseño consiste en una batería de fibras hueca y porosa en su interior, colocadas en paralelo. Las células se concentran y aumenta la densidad celular, en los intersticios de las fibras huecas. El medio de cultivo fluye en contrasentido desde el exterior del reactor o a través de una carcasa como si fuera un intercambiador de calor de doble tubo. Para solventar el problema de la escasa transferencia de masa (nutrientes y OD) dentro de la fibra hueca, un diseño novedoso es el tambor rotativo en el cual, el tambor externo rota sobre la batería de fibras huecas, generando una circulación constante de masa y de momentun, aumentando las tazas de transferencia.

Células empaquetadas - biorreactor de Lecho Empacado (O2)

El empaquetamiento celular es una forma menos drástica de inmovilización; pues ésta es parcial. También tiene el objetivo de aumentar la concentración y la densidad celular; pero al no estar enclaustradas las células, la transferencia de masa es mayor, aunque siempre limitada. Un lecho empacado es una matriz de soporte sólido que retiene las células, bien por geometría (dentro de los intersticios o espacios huecos de la matriz), bien por afinidad (paso o adherencia selectiva). Un biorreactor con este propósito debe contener un lecho de soporte sólido, sumergido en el medio de cultivo. La oxigenación generalmente se realiza en el exterior del lecho, a través del medio de cultivo.

Cultivos enzimáticos – Reactores de Lecho Catalítico

Los cultivos enzimáticos se comportan en algunos aspectos como cultivos celulares y en otros como reactivos químicos. Debido a que un sustrato enzimático es un catalítico de una reacción biológica, la cinética de estos reactores puede simularse como la química, pero sin olvidar que el compuesto es biológico. Los sustratos enzimáticos deben estar anclados a un lecho semisólido o a uno semifluido - según sea el caso - dependiendo de la naturaleza enzimática del sustrato; que por la naturaleza de la enzima se conocen como lechos catalíticos. Muchas veces el medio de cultivo, además de la enzima, requiere, para un sustrato determinado, su respectivo precursor metabólico llamado cofactor, más algún componente especial que agilice el proceso metabólico.

Modo de Operación y Sistemas de Cultivo

El modo de operación de un sistema de cultivo, es sinónimo del modo de operar del biorreactor o fermentador. Éste no solo influye en el diseño propio del reactor, también, en el modelo cinético de crecimiento del cultivo y en el proceso de producción. Existen tres modos de cultivo aunados a tres modos básicos de operación:
  • Discontinuo(batch): por lotes o tandas, sin alimentación (F); se coloca dentro del biorreactor la carga total de cada proceso (tanda o lote) de cultivo o fermentación y se dejar que se lleve a cabo el proceso productivo o la fermentación por el tiempo que sea necesario; el cuál se denomina tiempo de retención.
  • Semicontinuo (feed batch): por lotes alimentados, con alimentación de entrada (F1); se alimenta una línea de entrada o alimentación (F1) para que el sistema de cultivo tenga un producto (biomasa) con máximo de crecimiento (exponencial) y aumente la productividad.
  • Continuo (continuos): por quimioestato, se alimenta una línea de entrada F1 o alimentación y se drena una línea de salida F2 o lavado; de manera que los flujos o caudales de ambas líneas sean iguales y la producción sea contínua.

No hay comentarios:

Publicar un comentario